The Well-Qrdering Principle for the Integars

Some proofs in mathematics use a property of the set of integers called the Well-Ordering Principie.

Definition of the Well-Ordering Principle for the Integers

Every non-empty set of integers | 7
in which every element is greater than or equal to some fixed integer
has a least element.

More formaily, specifying Condition (1} and Condition (2):
Let set S be a set of integers such that:
1) There is at least one integer element in 8, and
2) There exists an integer L such that every e!ement in set S is greater than or equal to L.
Then, by the Well-Ordering Principle, S has a least element m.
Note: The integer L (thought of a “Lower Bound” of integers in S) is most likely not in the set S.

And, the choices of which integer L might be is never unigue:
many different integers can be chosen as L. to serve as a lower bound for set S.
For example, if =2 works,thenL =1, L =0, L= -1, ete., ali will also work.

Example 1: Verify that the Well-Ordering Principle can be applied to set S,
where set S = { Allintegers xsuch that 24 = xy for some integery}.
1) [ Show that there is at Jeast one integer element in set S. ]
24 = 12x2 = xy where x =12 and y=2.
Thus, x=12 isin set 8, so there is at least one integer element in S, so S is a non-empty set.

2) [ Show that there exists an integer L such that, forall xin S, x >1L.]

By definition of S, every integer element in S is a divisor of 24.
The divisors of 24 range between —24 and +24 , so every divisor of 24 is greater than or equal
to —25 . Thus, every element in set S is greater than or equal fo —25 .

- Set S satisfies Condition (1) and Condition ( 2 ) of the Well-Ordering Principle of the Integers.
. By the Well-Ordering Principle of the Integers, set S has a least element, m.

Regarding the step of locating an integer L to serve as a "Lower Bound” of the selements in set S,
sometimes the definition of S itself says, for instance, that set S is the set of all integers n, n> 0,

such that n has such-and-such property. In that case, verifying the existence of a "Lower Bound®
for the elements of S is accomplished just by saying, "By definition of set S, every integer in S is
greater than or equal 1o 0."




A First Example of a Proof
using the Well-Ordering Principle of the Integers
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On the following two pages are two proafs of Theorem 4.3 .4, which states that every integer which is greater
than 1 is divisible by some prime number, chﬂlneaﬂtoapplythefoﬂomgth@m

The following theorem is useful when a proof deals with integers which are not ptime numbers,

Theorem (The Non-Prime Iteger Greater Than One Theorem):
Foreveryiuteger n , ifn >1 and 1.3 not a prime number,
thenthereexistintegarsrandssuchthat1<r<n amd 1<s<n and n = 13
Proof: Let n be any integer.
Supposethat n > 1 and n is not a prime number.
Since n isnot prime, there exist pesitive integers r and 5 suchthat n =rs and r#1 and g1,
<r>1 and s> 1, sﬁzcethsympcsiﬁveiu’s&gmsnotsqmltol .
S IS>71 and rs > g, by rules of algebra.
<~0o>r1 and n> g, bysubstitution (recali that n = rs),

S l<r<n apd 1<s<n and B =rs. QED



Theorem 4.3.4: Forevery integer n > 1, nis divisible by some prime number .
[ This proof illustrates one way to use the Well-Ordering Principle of the Integers to prove a theorem.
Following this proof, another proof of this theorem is presented which illustrates a second way to use the
Well-Ordering Principle to prove a theorem. ]

Proof#1:

Suppose, by way of contradiction, that there exists an integer N suchthat N > 1 and N isnot
divisible by any prime number,

Let 8 = { all positive integers n suchthat that n > I and n is not divisible by any prime number. }
[ Here, the least element m will be the first integer greater than 1 which is not divisible by a prime number. ]
Since N >1 and N is not divisible by any prime vumber, N € S, so S isnotthe empty set.

By definition of set S, everyelementof 8 isgreaterthan 1, so 1 isa “Lower Bound” integer for set §.

- 8 satisfies the conditions of the Well-Ordering Principle of the Integers..

- By the Well-Ordering Principle of the Integers, S has a least element, m .

Since m is divisible by m (thatis, m isits own divisor) and since m is not divisible by any prime number,
m is not & prime number. Also,. m > 1.

Thus, since m > 1 and m is not & prime number, there exist integers T and s such that
I<r<m and 1<s<m and m = rs. Thus, | m,

Since r < m, risnotintheset S.

Since 1 < r and r isnotintheset 8, there exists a prime p such that p | r, by definition of S,

Since pir and r|m, p| m by transitivity of divisibility.

Since p is a prime number, m is divisible by the prime number p, which contradicts the fact that m is

not divisible by any prime number.

Therefore, for every integer n > 1, nis divisible by some prime number, by proof-by-contradiction. QED
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Theorem 4.3.4: Foreveryinteger n > 1, nisdivisible by some prime number p .

Proof#2:
Letn be any integer such that n > 1. [NTS: There exists a prime number p suchthat p | n.]

Ilet 8 = { allintegers t suchthat that t > I and t{| n.}
[ Here, the least element m will be the first divisor of n which is greater than 1. It will be 5 prime number.
Since » > 1 and n | n, n isanclementofset S,by definitionofsetS. Thus, S is not the empty set.
Also, by definition of §, every elementof S is greaterthan 1, so 1 is a “Lower Bound” integer forset S.
=~ S satisfies the conditions of the Well-Ordering Principle of the Integers..
<. By the Well-Ordering Principle of the Integers, S has a least element, m . [NTS: m is a prime number ]
Som>1 and m|n. |
Suppose, by way of contradiction, that m is not a prime number,
By definitionof S, m > 1. Thus, m is a non-prime integer greater than one.
Thus, since m > 1 and m is not a prime number, there exist integers 1 and s such that
l1<r<m and 1<s5<m ad m = rs. Thus, r| m.
Since r < m and m isthe leastelementin 8, r is not an element inthe set S .
Since 1 < r and r isnotan elementinthe set S, we concludethat r § n.
Since r {m and m |n, r|n bytanstivity of divisibility.
Therefore, r{n and 1 { n, whichisa contradiction.
~. m is a prime oumber, by proof-by-contradiction .
Recallthat m | n.
" n is divisible by the prime number m. Let p = m. .. p isa prime number and pin.
". nis divisible by some prime number p.

Therefore, for every integer n > 1, n is divisible by some prime number p, by Direct Proof, QED



